鏡の中のf(x)

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月6日18:18 正解数: 42 / 解答数: 56 (正答率: 75%) ギブアップ不可

全 56 件

回答日時 問題 解答者 結果
2021年4月10日17:38 鏡の中のf(x) aoneko
不正解
2021年2月25日11:23 鏡の中のf(x) tima_C
正解
2021年2月18日8:54 鏡の中のf(x) ゲスト
正解
2021年1月31日17:52 鏡の中のf(x) ゲスト
正解
2021年1月14日0:10 鏡の中のf(x) ゲスト
正解
2021年1月11日22:04 鏡の中のf(x) watero00
正解
2021年1月6日23:16 鏡の中のf(x) Benzenehat
正解
2021年1月6日23:16 鏡の中のf(x) Benzenehat
不正解
2021年1月6日23:15 鏡の中のf(x) Benzenehat
不正解
2020年9月18日17:23 鏡の中のf(x) tsukasa
正解
2020年8月31日16:33 鏡の中のf(x) lemon_math_tea
正解
2020年8月29日17:34 鏡の中のf(x) ゲスト
正解
2020年6月19日2:04 鏡の中のf(x) pichipichipizza
正解
2020年6月18日17:22 鏡の中のf(x) ゲスト
正解
2020年6月18日17:12 鏡の中のf(x) ゲスト
正解
2020年6月18日17:01 鏡の中のf(x) ゲスト
正解
2020年6月18日16:52 鏡の中のf(x) ゲスト
正解
2020年6月18日16:50 鏡の中のf(x) ゲスト
正解
2020年6月18日16:50 鏡の中のf(x) ゲスト
正解
2020年6月18日16:49 鏡の中のf(x) ゲスト
正解
2020年6月18日16:49 鏡の中のf(x) ゲスト
不正解
2020年6月18日16:47 鏡の中のf(x) Yukishita
正解
2020年6月18日16:47 鏡の中のf(x) maborosigin
正解
2020年6月17日18:24 鏡の中のf(x) ille_yzqn
正解
2020年6月11日0:40 鏡の中のf(x) okapin
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

都合のいいn

masorata 自動ジャッジ 難易度:
3年前

54

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

50629の素因数分解

masorata 自動ジャッジ 難易度:
3年前

37

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

[A] Natural Number

okapin 自動ジャッジ 難易度:
3年前

52

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

tan三兄弟

masorata 自動ジャッジ 難易度:
3年前

24

問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

整数問題①

lucy 自動ジャッジ 難易度:
3年前

15

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
3年前

24

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

One to Six

sapphire15 自動ジャッジ 難易度:
3年前

32

問題文

$1\thicksim6$までの数字を$1$回ずつ使って空欄を埋め以下の等式を成立させてください。解が存在しない場合はその旨を答えてください。

$(1)\square\square\times\square=\square\square\square$
$(2)\square\square+\square\square=\square\square$

解答形式

1行目に$(1)$、2行目に$(2)$の解を入力してください。
等式をすべて半角で入力してください。ただし、「$\times$」はx(小文字のエックス)で代用するものとします。
存在しない場合は-1を入力してください。
また、解が複数存在する場合はどれを回答してもかまいません。

(例)
$3\times7=21$と入力する場合 3x7=21
$3+7=21$と入力する場合 3+7=10


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

Thirteen Ones

halphy 自動ジャッジ 難易度:
3年前

19

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

hinu問題02

hinu 自動ジャッジ 難易度:
3年前

29

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

よじさんじ

masorata 自動ジャッジ 難易度:
3年前

9

問題文

実数$ a $ を $a=\sqrt[3]{1+\sqrt2} +\sqrt[3]{1-\sqrt2}$ で定める。以下の問いに答えよ。

⑴ $a^3+3a-2=0$ であることを示せ。また、$0<a<2$ を示せ。

⑵ $x$ について以下の恒等式が成り立つことを示せ。
$$
x^4+4x-3=(x^2+a)^2-2a(x-\frac{1}{a})^2
$$

⑶ 4次方程式 $x^4+4x-3=0$ の実数解を $a$ を用いて表せ。

解答形式

⑶のみ解答せよ。解は2つ存在し、
$$
x= -\sqrt{\frac{ア}{イ}}\ \pm \ \sqrt{\sqrt{\frac{ウ}{エ}}-\frac{オ}{カ}}
$$

の形である。ア~カのそれぞれには1から9までの自然数または文字$a$が入る。
ア~カに当てはまる数字または文字を、順にすべて半角で入力せよ。
たとえばア=2、イ=7、ウ=3、エ=5、オ=8、カ=$a$ と解答する場合は、
「27358a」と入力せよ。