鏡の中のf(x)

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月6日18:18 正解数: 59 / 解答数: 74 (正答率: 79.7%) ギブアップ不可

全 74 件

回答日時 問題 解答者 結果
2025年1月6日14:37 鏡の中のf(x) Furina
正解
2024年9月2日21:47 鏡の中のf(x) mits58
正解
2024年8月29日12:06 鏡の中のf(x) yuuu
正解
2024年8月27日0:51 鏡の中のf(x) Yuu_0909
正解
2024年8月19日15:09 鏡の中のf(x) nanohana
正解
2024年8月11日7:45 鏡の中のf(x) kusu394
正解
2024年7月20日12:06 鏡の中のf(x) ゲスト
正解
2024年4月17日5:30 鏡の中のf(x) Ninja-Sushi-Manga
正解
2024年4月4日0:32 鏡の中のf(x) karinohito
正解
2024年3月21日18:27 鏡の中のf(x) noname
正解
2024年3月21日18:24 鏡の中のf(x) noname
不正解
2024年3月19日23:29 鏡の中のf(x) iwashi
正解
2024年3月18日13:55 鏡の中のf(x) koumei
正解
2024年3月18日13:22 鏡の中のf(x) ゲスト
正解
2024年3月16日20:46 鏡の中のf(x) natsuneko
正解
2024年3月3日21:04 鏡の中のf(x) sha256
正解
2024年2月27日16:22 鏡の中のf(x) Prime-Quest
正解
2023年12月24日23:27 鏡の中のf(x) nmoon
正解
2023年10月2日12:39 鏡の中のf(x) ゲスト
正解
2023年9月20日18:01 鏡の中のf(x) Modern
正解
2023年9月20日17:59 鏡の中のf(x) Modern
不正解
2023年9月20日17:58 鏡の中のf(x) Modern
不正解
2023年8月21日21:23 鏡の中のf(x) koedame
正解
2023年7月19日22:44 鏡の中のf(x) miq_39
正解
2023年7月18日19:27 鏡の中のf(x) ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

都合のいいn

masorata 自動ジャッジ 難易度:
4年前

62

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

50629の素因数分解

masorata 自動ジャッジ 難易度:
4年前

59

問題文

$x^4+4$ を因数分解せよ。また、この結果を用いて $50629$ を素因数分解せよ。

解答形式

50629の素因数を小さい順に1,2,3......行目に半角数字で入力せよ。

整数問題①

lucy 自動ジャッジ 難易度:
4年前

24

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

円周率 3

hinu 自動ジャッジ 難易度:
4年前

56

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

[A] Don't Expand It!

masorata 自動ジャッジ 難易度:
4年前

43

問題文

$$
1+(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)
$$

は、$2$ で最大何回割り切れるか。

解答形式

半角数字のみで答えよ。
たとえば $5555$ 回割り切れると答えるのであれば1行目に
5555
と入力せよ。

[A] Natural Number

okapin 自動ジャッジ 難易度:
4年前

65

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。


問題文

$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。

なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。

正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。

解答形式

あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。

hinu問題02

hinu 自動ジャッジ 難易度:
4年前

43

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

tan三兄弟

masorata 自動ジャッジ 難易度:
4年前

33

問題文

実数 $A,B,C \ (-\pi/2<A<B<C<\pi/2)$ が

$$
\frac{1+\tan^3{A}}{1+3\tan^2A}=\frac{1+\tan^3{B}}{1+3\tan^2B}=\frac{1+\tan^3{C}}{1+3\tan^2C}\\
$$

をみたして動くとき、$\tan{(A+B+C)}$ がとりうる値の範囲を求めよ。

解答形式

解は $ m<\tan{(A+B+C)}< M$ の形で、$m,M$ はどちらも整数である。
$m,M$の値をそれぞれ1,2行目に半角数字で入力せよ。
例えば $m=-33, M=4$ と解答する場合、1行目に「-33」、2行目に「4」と入力せよ。

(20/06/21: よりシンプルな問題文に直しました。答えはそのままです。)

整数問題②

lucy 自動ジャッジ 難易度:
4年前

15

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

hinu積分01

hinu 自動ジャッジ 難易度:
4年前

17

問題

定積分

$$
\int_0^{\pi/2}\dfrac{\cos{x}-x}{1+\sin{x}}dx
$$

を計算せよ。

回答形式

半角数字で答えよ。無理数や記号等を用いる場合はTeX形式で入力せよ。

Thirteen Ones

halphy 自動ジャッジ 難易度:
4年前

27

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。